Two Parametric Kinds of Eulerian-Type Polynomials Associated with Euler’s Formula
نویسندگان
چکیده
منابع مشابه
Eulerian polynomials of spherical type
The Eulerian polynomial of a finite Coxeter system (W, S) of rank n records, for each k ∈ {1, . . . , n}, the number of elements w ∈ W with an ascent set {s ∈ S | l(ws) > l(w)} of size k, where l(w) denotes the length of w with respect to S. The classical Eulerian polynomial occurs when the Coxeter group has type An, so W is the symmetric group on n + 1 letters. Victor Reiner gave a formula for...
متن کاملRecurrences for Eulerian Polynomials of Type B and Type D
We introduce new recurrences for the type B and type D Eulerian polynomials, and interpret them combinatorially. These recurrences are analogous to a well-known recurrence for the type A Eulerian polynomials. We also discuss their relationship to polynomials introduced by Savage and Visontai in connection to the real-rootedness of the corresponding Eulerian polynomials.
متن کاملEulerian polynomials
A short report on my lecture at the Conference in Honor of W. Killing in Münster on December 7, 2007, together with some remarks on the preceding paper by ArjehM. Cohen. I reported on Euler’s famous paper Remarques sur un beau rapport entre les series des puissances tant direct que reciproques, Académie des sciences de Berlin, Lu en 1749, Opera Omnia Serie I, Bd. 15, pp. 70-90. In modern termin...
متن کاملThe Eulerian polynomials of type D have only real roots
We give an intrinsic proof of a conjecture of Brenti that all the roots of the Eulerian polynomial of type D are real and a proof of a conjecture of Dilks, Petersen, and Stembridge that all the roots of the affine Eulerian polynomial of type B are real, as well. Résumé. Nous prouvons, de façon intrinsèque, une conjecture de Brenti affirmant que toutes les racines du polynôme eulérien de type D ...
متن کاملIdentities Involving Two Kinds of q-Euler Polynomials and Numbers
We introduce two kinds of q-Euler polynomials and numbers, and investigate many of their interesting properties. In particular, we establish q-symmetry properties of these q-Euler polynomials, from which we recover the so-called Kaneko-Momiyama identity for the ordinary Euler polynomials, discovered recently by Wu, Sun, and Pan. Indeed, a q-symmetry and q-recurrence formulas among sum of produc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Symmetry
سال: 2019
ISSN: 2073-8994
DOI: 10.3390/sym11091097